exercices

1°) résolution d'inéquations du deuxième degré

Résoudre chacune des deux inéquations d'inconnu le nombre réel x suivante.

$$a^{\circ}$$
) $2x^2 + x > [x - 1]^2$ b°) $\frac{x^3}{x^2 + x - 6} \ge x + 6$

2°) dimensions possibles de rectangles de périmètre donné d'aire minorée

On considère un rectangle de 14 m de périmètre ; il s'agit de déterminer les valeurs possibles de sa longueur L et et de sa largeur l pour que l'aire de ce rectangle soit supérieure ou égale à 10 m².

- c°) Prouver que l'aire de ce rectangle est donnée, en fonction de sa largeur l, par l'expression l[7-l].
- d°) Établir que l est solution de l'inéquation $x^2 7x + 10 \le 0$ d'inconnu le nombre réel x.
- e°) Résoudre cette dernière inéquation ; en déduire les valeurs possibles de l et de L.

3°) <u>lien entre signes des racines et signe de pente à l'origine de fonctions polynômes du deuxième degré</u>

a, b et c étant trois nombres réels, avec $a \neq 0$, on considère deux fonctions polynômes du deuxième degré f et g définies sur \mathbb{R} de la façon suivante : $f: x \mapsto ax^2 + bx + c$ et $g: x \mapsto ax^2 - bx + c$. On suppose que le discriminant de f est positif.

- f°) Prouver que le discriminant de g est positif.
- g°) Prouver que l'opposé de la (des) racine(s) de cette fonction f est (sont) racine(s) de la fonction g. www.ugnatidamien.frà faire : 2018-09-19 lycée Marie Curie, Nogent-sur-Oise classe de première sypart. 1, chap. 1

exercices

1°) résolution d'inéquations du deuxième degré

Résoudre chacune des deux inéquations d'inconnu le nombre réel x suivante.

a°)
$$2x^2 + x > [x-1]^2$$
 b°) $\frac{x^3}{x^2 + x - 6} \ge x + 6$

2°) dimensions possibles de rectangles de périmètre donné d'aire minorée

On considère un rectangle de 14 m de périmètre ; il s'agit de déterminer les valeurs possibles de sa longueur L et et de sa largeur l pour que l'aire de ce rectangle soit supérieure ou égale à 10 m^2 .

- c°) Prouver que l'aire de ce rectangle est donnée, en fonction de sa largeur l, par l'expression l[7-l].
- d°) Établir que l est solution de l'inéquation $x^2 7x + 10 \le 0$ d'inconnu le nombre réel x.
- e°) Résoudre cette dernière inéquation ; en déduire les valeurs possibles de l et de L.

3°) lien entre signes des racines et signe de pente à l'origine de fonction polynôme du deuxième degré

a, b et c étant trois nombres réels, avec $a \neq 0$, on considère deux fonctions polynômes du deuxième degré f et g définies sur \mathbb{R} de la façon suivante : $f: x \mapsto ax^2 + bx + c$ et $g: x \mapsto ax^2 - bx + c$. On suppose que le discriminant de f est positif.

- f°) Prouver que le discriminant de g est positif.
- g°) Prouver que l'opposé de la (des) racine(s) de cette fonction f est (sont) racine(s) de la fonction g.