somme de nombres entiers naturels portés à une puissance entière naturelle

lycée Marie Curie, Nogent-sur-Oise

question de cours 1°)

www.ugnatidamien.fr

a et b étant deux nombres réels quelconques et n étant un nombre entier naturel quelconque aussi, donner, sans preuve, le développement maximal réduit au mieux de l'expression algébrique ci-après.

$$[a+b]^n$$

b°) Vérifier ce dernier développement avec des valeurs de a, b et n.

2°) application

p étant un nombre entier naturel quelconque, et considérant que $0^0=1$ (convention), $\forall n \in \mathbb{N}, s_{p,n}=\sum_{k=0}^n (k^p)$

- Exprimer la suite $(s_{0,n})_{n\in\mathbb{N}}$ sous forme explicite.
- En considérant $\sum_{k=0}^{n}([k+1]^{p+1}-k^{p+1})$, prouver la relation suivante pour $p\neq 0$.

$$\forall n \in \mathbb{N}, \qquad [p+1]s_{p,n} = [n+1]^{p+1} - \sum_{l=0}^{p-1} \left(\binom{p+1}{l} s_{l,n} \right)$$

En déduire les formes explicites des suites $(s_{1,n})_{n\in\mathbb{N}}$, $(s_{2,n})_{n\in\mathbb{N}}$, $(s_{3,n})_{n\in\mathbb{N}}$, $(s_{4,n})_{n\in\mathbb{N}}$ et $(s_{5,n})_{n\in\mathbb{N}}$.